Mathematical and physical papers

Free download. Book file PDF easily for everyone and every device. You can download and read online Mathematical and physical papers file PDF Book only if you are registered here. And also you can download or read online all Book PDF file that related with Mathematical and physical papers book. Happy reading Mathematical and physical papers Bookeveryone. Download file Free Book PDF Mathematical and physical papers at Complete PDF Library. This Book have some digital formats such us :paperbook, ebook, kindle, epub, fb2 and another formats. Here is The CompletePDF Book Library. It's free to register here to get Book file PDF Mathematical and physical papers Pocket Guide.

The papers are presented in chronological order across the volumes, enabling readers to understand their theoretical development and framing them in an accessible form for 'future historical interests'. Authorial notes and appendices are also included. This book will be of value to anyone with an interest in the word of Larmour, mathematics physics and the history of science.

A Dynamical Theory of the Electric and Luminiferous. Note on the Complete Scheme of Electrodynamic Equations. The Methods of Mathematical Physics c e. On the Relations of Radiation to Temperature e e. Can Convection through the Aether be detected Electrically? Protection from Lightning and the Range of Protection afforded. Viscosity in Relation to the Earths Free Precession. Periodic Disturbance of Level arising from the Load of Neigh.

On the Mathematical Expression of the Principle of Huygens. On the Ascertained Absence of Effects of Motion through. On the Constitution of Natural Radiation e e. Note on Pressure Displacement of Spectral Lines e. The Statistical and Thermodynamical Relations of Radiant.

Submission history

A possible explanation of the physicist's use of mathematics to formulate his laws of nature is that he is a somewhat irresponsible person. As a result, when he finds a connection between two quantities which resembles a connection well-known from mathematics, he will jump at the conclusion that the connection is that discussed in mathematics simply because he does not know of any other similar connection. It is not the intention of the present discussion to refute the charge that the physicist is a somewhat irresponsible person.

Perhaps he is. However, it is important to point out that the mathematical formulation of the physicist's often crude experience leads in an uncanny number of cases to an amazingly accurate description of a large class of phenomena. This shows that the mathematical language has more to commend it than being the only language which we can speak; it shows that it is, in a very real sense, the correct language. Let us consider a few examples. The first example is the oft-quoted one of planetary motion.

Mathematical Modelling of Engineering Problems

The laws of falling bodies became rather well established as a result of experiments carried out principally in Italy. These experiments could not be very accurate in the sense in which we understand accuracy today partly because of the effect of air resistance and partly because of the impossibility, at that time, to measure short time intervals. Nevertheless, it is not surprising that, as a result of their studies, the Italian natural scientists acquired a familiarity with the ways in which objects travel through the atmosphere.

It was Newton who then brought the law of freely falling objects into relation with the motion of the moon, noted that the parabola of the thrown rock's path on the earth and the circle of the moon's path in the sky are particular cases of the same mathematical object of an ellipse, and postulated the universal law of gravitation on the basis of a single, and at that time very approximate, numerical coincidence.


  1. Annales de l’Institut Henri Poincaré D;
  2. DO VIKINGS WEAR GLASSES ?!
  3. Mathematical Physical Papers - AbeBooks.
  4. Donate to arXiv.

Philosophically, the law of gravitation as formulated by Newton was repugnant to his time and to himself. Empirically, it was based on very scanty observations. The mathematical language in which it was formulated contained the concept of a second derivative and those of us who have tried to draw an osculating circle to a curve know that the second derivative is not a very immediate concept. Dicke, Am. Let us just recapitulate our thesis on this example: first, the law, particularly since a second derivative appears in it, is simple only to the mathematician, not to common sense or to non-mathematically-minded freshmen; second, it is a conditional law of very limited scope.

It explains nothing about the earth which attracts Galileo's rocks, or about the circular form of the moon's orbit, or about the planets of the sun. The explanation of these initial conditions is left to the geologist and the astronomer, and they have a hard time with them. The second example is that of ordinary, elementary quantum mechanics.

This originated when Max Born noticed that some rules of computation, given by Heisenberg, were formally identical with the rules of computation with matrices, established a long time before by mathematicians. Born, Jordan, and Heisenberg then proposed to replace by matrices the position and momentum variables of the equations of classical mechanics. They applied the rules of matrix mechanics to a few highly idealized problems and the results were quite satisfactory.

However, there was, at that time, no rational evidence that their matrix mechanics would prove correct under more realistic conditions. Indeed, they say "if the mechanics as here proposed should already be correct in its essential traits. This application gave results in agreement with experience. This was satisfactory but still understandable because Heisenberg's rules of calculation were abstracted from problems which included the old theory of the hydrogen atom.

The miracle occurred only when matrix mechanics, or a mathematically equivalent theory, was applied to problems for which Heisenberg's calculating rules were meaningless. Heisenberg's rules presupposed that the classical equations of motion had solutions with certain periodicity properties; and the equations of motion of the two electrons of the helium atom, or of the even greater number of electrons of heavier atoms, simply do not have these properties, so that Heisenberg's rules cannot be applied to these cases.

Nevertheless, the calculation of the lowest energy level of helium, as carried out a few months ago by Kinoshita at Cornell and by Bazley at the Bureau of Standards, agrees with the experimental data within the accuracy of the observations, which is one part in ten million. Surely in this case we "got something out" of the equations that we did not put in.

The same is true of the qualitative characteristics of the "complex spectra," that is, the spectra of heavier atoms. I wish to recall a conversation with Jordan, who told me, when the qualitative features of the spectra were derived, that a disagreement of the rules derived from quantum mechanical theory and the rules established by empirical research would have provided the last opportunity to make a change in the framework of matrix mechanics.

In other words, Jordan felt that we would have been, at least temporarily, helpless had an unexpected disagreement occurred in the theory of the helium atom. This was, at that time, developed by Kellner and by Hilleraas.

Account Options

The mathematical formalism was too dear and unchangeable so that, had the miracle of helium which was mentioned before not occurred, a true crisis would have arisen. Surely, physics would have overcome that crisis in one way or another. It is true, on the other hand, that physics as we know it today would not be possible without a constant recurrence of miracles similar to the one of the helium atom, which is perhaps the most striking miracle that has occurred in the course of the development of elementary quantum mechanics, but by far not the only one.

In fact, the number of analogous miracles is limited, in our view, only by our willingness to go after more similar ones. Quantum mechanics had, nevertheless, many almost equally striking successes which gave us the firm conviction that it is, what we call, correct.

TK Physical Education exam paper 2015

The last example is that of quantum electrodynamics, or the theory of the Lamb shift. Whereas Newton's theory of gravitation still had obvious connections with experience, experience entered the formulation of matrix mechanics only in the refined or sublimated form of Heisenberg's prescriptions. The quantum theory of the Lamb shift, as conceived by Bethe and established by Schwinger, is a purely mathematical theory and the only direct contribution of experiment was to show the existence of a measurable effect.

The agreement with calculation is better than one part in a thousand. The preceding three examples, which could be multiplied almost indefinitely, should illustrate the appropriateness and accuracy of the mathematical formulation of the laws of nature in terms of concepts chosen for their manipulability, the "laws of nature" being of almost fantastic accuracy but of strictly limited scope.

I propose to refer to the observation which these examples illustrate as the empirical law of epistemology. Together with the laws of invariance of physical theories, it is an indispensable foundation of these theories. Without the laws of invariance the physical theories could have been given no foundation of fact; if the empirical law of epistemology were not correct, we would lack the encouragement and reassurance which are emotional necessities, without which the "laws of nature" could not have been successfully explored. Sachs, with whom I discussed the empirical law of epistemology, called it an article of faith of the theoretical physicist, and it is surely that.

The empirical nature of the preceding observation seems to me to be self-evident. It surely is not a "necessity of thought" and it should not be necessary, in order to prove this, to point to the fact that it applies only to a very small part of our knowledge of the inanimate world. It is absurd to believe that the existence of mathematically simple expressions for the second derivative of the position is self-evident, when no similar expressions for the position itself or for the velocity exist.

It is therefore surprising how readily the wonderful gift contained in the empirical law of epistemology was taken for granted. The ability of the human mind to form a string of conclusions and still remain "right," which was mentioned before, is a similar gift. Every empirical law has the disquieting quality that one does not know its limitations.

We have seen that there are regularities in the events in the world around us which can be formulated in terms of mathematical concepts with an uncanny accuracy. There are, on the other hand, aspects of the world concerning which we do not believe in the existence of any accurate regularities.

We call these initial conditions. The question which presents itself is whether the different regularities, that is, the various laws of nature which will be discovered, will fuse into a single consistent unit, or at least asymptotically approach such a fusion.

International Journal of Mathematical Modelling & Computations

Alternatively, it is possible that there always will be some laws of nature which have nothing in common with each other. At present, this is true, for instance, of the laws of heredity and of physics. It is even possible that some of the laws of nature will be in conflict with each other in their implications, but each convincing enough in its own domain so that we may not be willing to abandon any of them. We may resign ourselves to such a state of affairs or our interest in clearing up the conflict between the various theories may fade out.

We may lose interest in the "ultimate truth," that is, in a picture which is a consistent fusion into a single unit of the little pictures, formed on the various aspects of nature. It may be useful to illustrate the alternatives by an example. We now have, in physics, two theories of great power and interest: the theory of quantum phenomena and the theory of relativity. These two theories have their roots in mutually exclusive groups of phenomena. Relativity theory applies to macroscopic bodies, such as stars.

The event of coincidence, that is, in ultimate analysis of collision, is the primitive event in the theory of relativity and defines a point in space-time, or at least would define a point if the colliding panicles were infinitely small.

Account Options